无人机及其相关技术的不断发展,已经打破了传统的仓储管理方式,为仓储带来了智能化的革新。传统的仓储管理,需要人工进行地毯式巡检,这种方式效率低,费时费力。另外,对于仓储安全的监管不能做到时效性,反应速度也具有滞后性。而全新的无人机巡检模式,基于先进的图像传感器、远程控制技术、AI等,使得无人机能够实现高效安全的自主巡逻,无需过多的人工介入。一旦无人机检测识别到危险,就能够立即发出警报,甚至可能提前预警,滞后性将得到改善。也需要AI等算法的支持。成都图形图像识别模块系统
成都慧视推出的深度学习算法开发平台SpeedDP,它的主要功能就是帮助进行算法模型的测试验证,进行快速的针对大量数据的AI自动标注,然后提升自身算法能力。在无人机智能炮弹测试验证中,通过对原始算法的模型训练,能够不断评估算法的能力,然后对新的打击数据集目标进行AI自动标注,让算法在学习中不断变得聪明。通过SpeedDP的应用,能够极大减少整个测试验证所需时间,减少人力成本支出,减少项目开发周期,让工程师不再为繁琐的图像标注浪费时间将更多的精力放在更重要的领域。成都工业级图像识别模块板打造一套完整的图像识别模块。
在我们生活生产中,许多小型化的无人机类似于昆虫,凭借其机动、灵活、体积小的特点能够在复杂的环境中执行飞行任务。但是再精细化的操控,也难以做到完全避免障碍物的阻碍,因此需要采用AI避障的功能。AI避障中很重要的一点是要对环境进行自动化的识别。利用高性能的AI图像处理板,再定制化目标识别检测的算法,通过对这类无人机作业环境的大量深度学习,就能够让无人机AI愈发聪明,能够快速识别摄像头范围内的物体,从而实现避障的操作。
多目标跟踪是指在连续的图像中,通过目标检测算法识别出每一帧中的目标,并在时间上跟踪它们的位置和状态。但目标会不断发生尺度、形变、遮挡等变化,而且还会有目标出现和消失的情况,再加上视频采集端的相机所处环境可能受到外界影响导致抖动的情况(例如无人机高空检测),就会给多目标跟踪造成一定的困难。由于我们不能控制目标,所以只能从视频采集端维护跟踪的稳定性。因此,成都慧视针对于多目标检测跟踪抖动丢失的优化方法是:1.改进目标检测,使用更加鲁棒的目标检测算法。2.增强特征描述,利用深度学习提取更高级别的语义特征,这些特征对于小范围内的视角变化具有更好的不变性3.改进运动模型,在算法中加入对摄像头运动的估计,通过补偿摄像头运动来减小目标真实运动与预测之间的差距。4.数据关联策略,设计更灵活的数据关联算法,允许更大的距离阈值来匹配候选目标。图像识别需要图像处理板的硬件支持;
多边形标注能够能够帮助我们标注一些规则复杂的物体,如动物、人、车、建筑物等,与矩形标注框等方法相比,多边形标注更能精确展示被标注物体的形状、大小以及实时形态,通过大量的多边形标注工作,能够更好的帮助我们提高算法模型的准确性和鲁棒性。传统的多边形标注方法中,标注者需要在物体的边缘上依次单击鼠标或使用绘图工具,将点连接起来形成一个封闭的多边形。标注的难度取决于被标注物体的复杂程度,相较于矩形框标注更加费时费力,如果遇到大量待标注目标,则极大地影响工作效率。成都慧视开发的Viztra-ME025图像处理板拥有3.0TOPS的算力。成都工业级图像识别模块处理版
成都慧视可以定制SDI接口的RK3588图像处理板。成都图形图像识别模块系统
在2024年的巴黎奥运会上,AI的应用成为了竞技之外的另一个焦点,让运动员、观众、管理人员体验到了和以往赛事与众不同的氛围。其中,安全作为不可避免的话题,成为本次AI作用比较大的领域之一。前期建设时,就采用了智能体育馆的方案,配有先进的传感器和物联网设备,通过对实时人流的大量数据分析,来预测观众接下去会去看什么,优化下一场场馆的安保、座位等事务,提升观众体验,提高安保水平。另一方面,摄像头收集画面时,还会对监控画面的每一个人进行安全识别分析,针对于“禁区”除了常规的面部识别外,还会对每个进入场馆或者在场馆附近徘徊逗留的人进行AI分析,来发现潜在的威胁和异常。然后一旦出现可疑人员或者物品,就可以立即向现场安保发去坐标,从而提升整个场馆内外的总体安全性。成都图形图像识别模块系统
成都慧视光电技术有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。